Grid Search 를 사용하여 파라미터를 찾고 모델에 적용하기

from sklearn.model_selection import GridSearchCV
model = DecisionTreeClassifier(random_state=0)

params={
    "max_depth":[4,5,6,7],
    "min_samples_leaf" : [2, 4],
    "max_leaf_nodes": [5,10]
}

gs = GridSearchCV(model, params1).fit(X_train, Y_train)

# Report 확인하기
report = pd.DataFrame(gs.cv_results_)

# 최적 파라미터 확인
gs.best_params_

# 최고 점수 확인
gs.best_score_

# 최고 모델 사용하기
model_use = gs.best_estimator_

# 모델로 평가하기
model_use.fit(X_train, Y_train)
pred_train = model_use.predict(X_train)
pred_test = model_use.predict(X_test)

res = f1_score(Y_test, pred_test)

 

주요 파라미터

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

 

sklearn.model_selection.GridSearchCV

Examples using sklearn.model_selection.GridSearchCV: Release Highlights for scikit-learn 1.4 Release Highlights for scikit-learn 0.24 Feature agglomeration vs. univariate selection Shrinkage covari...

scikit-learn.org

 

+ Recent posts