Grid Search 를 사용하여 파라미터를 찾고 모델에 적용하기
from sklearn.model_selection import GridSearchCV
model = DecisionTreeClassifier(random_state=0)
params={
"max_depth":[4,5,6,7],
"min_samples_leaf" : [2, 4],
"max_leaf_nodes": [5,10]
}
gs = GridSearchCV(model, params1).fit(X_train, Y_train)
# Report 확인하기
report = pd.DataFrame(gs.cv_results_)
# 최적 파라미터 확인
gs.best_params_
# 최고 점수 확인
gs.best_score_
# 최고 모델 사용하기
model_use = gs.best_estimator_
# 모델로 평가하기
model_use.fit(X_train, Y_train)
pred_train = model_use.predict(X_train)
pred_test = model_use.predict(X_test)
res = f1_score(Y_test, pred_test)
주요 파라미터
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
sklearn.model_selection.GridSearchCV
Examples using sklearn.model_selection.GridSearchCV: Release Highlights for scikit-learn 1.4 Release Highlights for scikit-learn 0.24 Feature agglomeration vs. univariate selection Shrinkage covari...
scikit-learn.org